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Abstract

We investigate the spatial distribution of air pollutants in Japan,
South Korea, and China for the year 2021. Our analysis utilizes satel-
lite data on fine particulate matter at the municipal/county level,
along with population density, vegetation difference, and night lights.
Using dependence analysis and a clustering method to classify munic-
ipalities and counties based on geographical and similar attributes, we
delineate distinct clusters within each country. Furthermore, through
this spatial examination, we identify consistent positive correlations
between air pollution and economic activity in each country. These
methods allow us to detect areas where targeted policies can effectively
enhance air quality for the population.

Keywords: Air pollution, Japan, South Korea, China, Spatial anal-
ysis.

1 Introduction

Historically, as countries undergo economic growth, they often experience
rapid environmental deterioration. South Korea and China were no excep-
tion; during periods of rapid economic growth, their air quality significantly
declined. Given their geographical proximity to and economic interdepen-
dence with Japan, these nations can draw valuable insights from Japan’s
experience with environmental deterioration and subsequent improvement
after the 1960s. This study adopts a spatial analysis perspective to explore
the distribution of air pollution and economic activity in China, Japan, and
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South Korea, examining different cities and regions. Through various spa-
tial techniques, we investigate the existence of clusters with similar levels of
economic activity and air pollution in these countries.

We employ satellite data from the AidData geoquery database (Good-
man et al., 2019) to assess particulate matter (PM2.5), health and density
of vegetation (NDVI), population density, and night lights. Our focus on
PM2.5, an easily identifiable air pollutant, eliminates the need to trace its
origin, simplifying the study. Using principal component analysis (PCA),
spatial dependence analysis, and a spatial clustering algorithm, we identify
and analyze clusters of municipalities for Japan and South Korea, and coun-
ties for China.1 All this allows us to detect groups of municipalities (clusters)
within each country with similar economic activity and air pollution levels.
Employing PCA, we decrease the dimensionality of the variables into two
components: Component one (PC1) includes economic activity-related vari-
ables (population density, night lights, and the vegetation index NDVI), while
Component two (PC2) primarily consists of PM2.5.

Next, we apply the spatial dependence method introduced by Anselin
(1995). This enables the identification of regional hot spots (high-value clus-
ters), cold spots (low-value clusters), and spatial outliers. Subsequently, we
utilize a spatial clustering method to internally derive regional boundaries
based on the pollution levels and economic activity of the municipalities
within the studied countries.

In this study, we identify positive and statistically significant levels of
spatial dependence for both PC1 and PC2 across various municipalities of
Japan and South Korea, and counties in China. Figure 4 depicts the different
regions of Japan. The PC1 data highlights clusters with high economic ac-
tivity. Conversely, the PC2 data reveals clusters with low pollution levels in
Honshu’s (the central and most populated island) eastern area and high pol-
lution spread throughout the island of Kyushu. In the case of South Korea,
a cluster of high pollution levels is located to the northwest, mainly compris-
ing Seoul, and a small cluster of low pollution, primarily to the southwest.
In China, a large cluster of low air pollution is located to the northwest,
and many smaller clusters of high levels of air pollution are found to the
northeast, center, and southwest.

By utilizing the PC1 and PC2 data, we can effectively partition each
country into separate analytical regions. These newly defined regions have
boundaries that differ from the traditional administrative divisions. As a
result, it becomes imperative to devise policies aimed at improving air quality,

1Throughout this work, we will use the terms “municipalities” and “counties” interchange-
ably to economize on words.
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with a focus on coordinated efforts spanning various municipalities within
these newly established regions in each country.

This article contributes by utilizing both spatial dependence analysis and
regionalization methods. Through this integration, we identify clusters that
are spatially contiguous and robust. Studies such as Mendez and Gonzales
(2021) and Saunders et al. (2021) relied on this approach to analyze human
capital and mitigating extreme rainfall events, respectively.2 However, to the
best of our knowledge, it has not been applied in the context of comparing
air pollution levels in China, South Korea, and Japan.

The literature discussing air pollution and its effects is vast. The impact
of air pollution on human health is substantial, ranging from minor upper res-
piratory irritation to severe outcomes such as lung cancer, chronic bronchitis,
and asthmatic attacks (Bernstein et al., 2004; Kampa and Castanas, 2008).
An investigation by Lanzi et al. (2018) assesses the potential costs of outdoor
air pollution, projecting that if no action is taken, these costs could escalate
to reach up to 1% of global GDP by 2060. Additionally, Dechezleprêtre et al.
(2019) estimate that an increase of 1 µg/m3 in PM2.5 concentrations within
a given year could result in a negative impact of 0.8% on real GDP.

Several works examine the impact of air quality on the Japanese popu-
lation. Katanoda et al. (2011) delve into the consequences of sulfur dioxide,
nitrogen dioxide, and PM2.5 on individuals from three different prefectures,
noting significant increases in lung cancer and respiratory diseases due to
prolonged exposure to air pollutants. Yorifuji et al. (2015), based on a na-
tionwide population-based longitudinal survey, find that exposure to air pol-
lution during pregnancy increases the likelihood of babies being born with
low weight.

Numerous studies employ spatial data to analyze air pollution in Japan.
Kume et al. (2007) utilize contour maps to detail the monthly distribution
variation of air pollutants for Shizuoka from 2001 to 2002. Araki et al. (2015)
utilize regression-kriging to analyze air pollutants from 2009 to 2010, demon-
strating that this methodology accurately predicts the spatial distribution of
air pollutants in the country with high accuracy and resolution. Furthermore,
Shimadera et al. (2009) reveal that transboundary air pollutants originating
from neighboring Asian countries significantly impact ionic concentrations in
fog in the Kinki region.

For South Korea, Jung et al. (2019) investigate the link between urban
structures and air pollutant emissions, considering factors such as size, area,
and the configuration of industrial complexes. Utilizing Bayesian spatial lin-
ear regression models, the authors reveal varying local emissions in areas with

2In terms of methodology, Mendez and Gonzales (2021) align most closely with our study.
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agglomerated industry complexes or large populations. Utilizing province-
level data and focusing on the National Strategy for Green Growth Hille et al.
(2021) investigates the impact of economic growth on sulfur oxide and total
suspended particles (TSP) emissions. The study emphasizes the need for
a greener growth path through targeted environmental regulations, cleaner
technologies, and a shift towards creative sectors, supported by investments
in R&D and education.

Lim et al. (2014) explores cardiovascular mortality’s regional distribution,
finding higher rates in provincial districts (gu) in Incheon and the northern
part of Gyeonggido compared to other areas. Kim et al. (2019) highlight that
the effects of PM10 on mortality may extend beyond a month, with varying
impacts for SO2. The authors explain that different cities exhibited higher
PM10 mortality effects, particularly with elevated SO2 concentrations. Their
findings underscore the importance of addressing both particulate (PM10)
and gaseous (SO2) pollution in air quality interventions for effective public
health outcomes.

In the context of China, He et al. (2017) conduct a geospatial analysis
of inequality spanning various Chinese counties, prefectures, and provinces
from 1997 to 2010. Employing local indicators of spatial autocorrelation,
they identify a northward shift in hot spots of economic growth. Examin-
ing the relationship between the socioeconomic status of Chinese counties
and prolonged exposure to PM2.5 concentrations, Han et al. (2021) find that
populations in economically disadvantaged counties are disproportionately
vulnerable to the adverse impacts of such exposure. Yin et al. (2015) in-
vestigate the Environmental Kuznets Curve (EKC) hypothesis concerning
CO2 emissions, utilizing panel data from 1999 to 2011 and finding support-
ing evidence for its existence. Wang et al. (2016) explore the impacts of
economic growth and urbanization on sulfur dioxide emissions through the
EKC hypothesis, confirming a relationship between economic growth and
sulfur dioxide emissions but not for urbanization and the latter.

This paper is structured as follows: The following section explains the
data utilized, providing descriptive statistics for the variables under exam-
ination. Section 3 unveils the results, while in Section 4, we explore how
these methods can be complementary, and discuss relevant policy implica-
tions. The paper concludes in Section 5.
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2 The Data

2.1 Description of the data

For this work, we rely on a novel dataset on air pollution from the AidData
geoquery database (Goodman et al., 2019). More specifically, we use the
following variables:

• Particulate matter (PM2.5) concentration: This metric depicts
the presence of gaseous pollutants in micrograms (one-millionth of a
gram) per cubic meter (µg/m3) of ambient air for the year 2021. These
particles can comprise a variety of chemicals, and the primary data
originates from Van Donkelaar et al. (2021).

• Normalized Difference Vegetation Index (NDVI): This numeri-
cal indicator is used in remote sensing and satellite imagery analysis to
assess and quantify vegetation health and density. It helps in assessing
changes in vegetation over time, identifying areas affected by drought
or deforestation, and providing insights into ecosystem health. Null
values represent surfaces like bare soil or rocks, indicating an urban
area. The original source of this data is Pedelty et al. (2007).

• Population density: This indicator gives the estimated number of
people per square kilometer in 2020. The source of this data is the
CIESIN (Columbia University, 2018).

• Night lights: This indicator communicates the intensity of lights em-
anating from cities, towns, and other areas with sustained lighting.
The measurements are expressed in digital numbers (DNs) for the year
2020, serving as a proxy for the economic activity occurring in a par-
ticular area or region. The primary source of this data is Elvidge et al.
(2021), where the authors provide data up to and including the year
2020.

2.2 Descriptive statistics

Tables 1, 2, and 3 provide summary statistics of the previously discussed
variables pertaining to Japan, South Korea, and China. We observe that,
on average, China has higher PM2.5 concentrations (29.15 µg/m3 vs 10.09
µg/m3 for Japan and 19.21 µg/m3 for South Korea) even though it has a
lower population density (535.41 person per km2 compared to 3732.5 for
South Korea and 1103.99 for Japan).
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Night lights serve as an indicator due to their strong correlation with
economic activity. They are instrumental in examining economic dynamics
across different cities and regions. Areas with heightened economic activity,
such as urban centers, tend to have brighter lights, while those with lower
activity, like rural areas, display dimmer lights.

Figures 1, 2, and 3 provide an overview of the spatial distribution of
PM2.5 concentrations in Japan, South Korea, and China respectively. Most
concentrations in Japan are concentrated in the Kantou region and parts of
the Chuubu and Kansai regions. Kyushu, on the other hand, exhibits higher
concentration levels in the prefectures of Fukuoka and Kumamoto (to the
north and the midwest, respectively). For South Korea, the highest concen-
trations are to the west, in the Gyeonggi province and parts of the South
Chungcheong province (to the northwest and southwest, respectively). In
China, a similar pattern is observed in the northeastern and northern re-
gions, as well as in certain areas of the eastern region. For all of the coun-
tries analyzed, municipalities with elevated pollution values tend to cluster
with others of similar levels and vice versa, although these clusters are not
necessarily contiguous.

Table 1: Descriptive statistics for Japan

Statistic Mean St. Dev. Min Q1 Median Q3 Max Obs.

Particulate matter concentration (PM2.5)
(µg/m3, 2021)

10.09 2.77 0.00 8.64 9.91 11.74 18.69 1665

NDVI, 2020 4354.01 2720.31 2.40 66.19 4561.86 787.48 39792.82 1665

Population density
(persons per km2, 2020)

1103.99 2676.25 2.40 63.72 207.84 784.28 39792.82 1665

Night Lights (DNs, 2020) 3.86 8.10 0.00 0.26 0.88 3.47 77.01 1665

Table 2: Descriptive statistics for South Korea

Statistic Mean St. Dev. Min Q1 Median Q3 Max Obs.

Particulate matter concentration (PM2.5)
(µg/m3, 2021)

19.21 4.55 0.00 17.78 19.66 21.22 27.96 229

NDVI, 2020 3609.78 1090.26 501.16 2753.82 3803.72 4446.14 5758.87 229

Population density
(persons per km2, 2020)

3732.50 5773.55 16.32 80.51 431.40 5411.36 24765.50 229

Night Lights (DNs, 2020) 15.98 19.79 0.33 1.56 5.09 28.69 101.08 229
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Table 3: Descriptive statistics for China

Statistic Mean St. Dev. Min Q1 Median Q3 Max Obs.

Particulate matter concentration (PM2.5)
(µg/m3, 2021)

29.15 11.35 0.00 22.09 27.70 35.81 88.44 2391

NDVI, 2020 4278.76 1196.51 153.71 3630.69 4339.67 5171.08 7092.75 2391

Population density
(persons per km2, 2020)

535.41 1092.85 0.05 95.33 232.35 537.60 15907.00 2391

Night Lights (DNs, 2020) 1.73 4.07 0.00 0.11 0.39 1.27 63.17 2391

Figure 1: PM2.5 concentrations in Japan

Figure 2: PM2.5 concentrations in South Korea
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Figure 3: PM2.5 concentrations in Mainland China

3 Results

3.1 Principal Component Analysis

Table 4 presents a condensed overview of the outcomes from the principal
component analysis. The table information delineates the findings for each
country and is structured into three sections. First, we show the proportion
of variance, as obtained from the principal components. We denote the first
component as PC1 and the second one as PC2. These components illustrate
the variance for Japan, Korea, and China. With regard to Japan, PC1
and PC2 account for 59% and 23% of the total variance. For South Korea,
PC1 represents 61%, while PC2 contributes 25%. Lastly, in the case of
China, PC1 explains 50% of total variance and PC2 27%. Cumulatively,
these components represent upwards of 75% of the total variance.

The second section details the squared correlations between the compo-
nents and the original variables. This information provides insights into the
magnitude of correlations, enabling an examination of the components con-
cerning the original variables. For instance, key variables constituting PC1
for all the countries include NDVI and night lights. In PC2, the most signifi-
cant variable is particulate matter. To determine the number of components
to utilize, we adhere to the “95% threshold criterion.” This numerical value
corresponds to the components necessary to explain 95% of the variance. In
our context, this implies utilizing the first two components.

Having condensed the variables into PC1 and PC2 to capture a substan-
tial portion of the variance and reduce dimensionality, we can proceed to
examine their spatial distribution. We then delve into the analysis of their
spatial dependence.
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Table 4: Principal Component Analysis

Total Variance and Cumulative Proportion

Japan South Korea China
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Proportion of variance 0.59 0.23 0.14 0.04 0.61 0.25 0.12 0.03 0.50 0.27 0.20 0.03
Cumulative proportion 0.59 0.82 0.96 1.00 0.61 0.85 0.97 1.00 0.50 0.77 0.97 1.00
Squared correlations between the components and the variables:

Particulate matter (PM2.5) 0.16 0.81 0.04 0.00 0.02 0.98 0.00 0.00 0.13 0.44 0.43 0.00
Population density 0.83 0.01 0.10 0.07 0.66 0.00 0.33 0.00 0.11 0.50 0.39 0.00
NDVI 0.50 0.11 0.38 0.00 0.85 0.00 0.10 0.05 0.88 0.07 0.00 0.06
Night lights 0.86 0.00 0.06 0.07 0.90 0.01 0.03 0.06 0.88 0.06 0.00 0.06
Criterion to choose the number of components

Eigenvalues: 2.35 0.93 0.58 0.14 2.42 0.99 0.47 0.11 2.00 1.07 0.82 0.11
95% threshold criterion: 2 2 2

3.2 Spatial Dependence Analysis

Figures 5, 7, and 9, examine the Local Moran scatter plots illustrating au-
tocorrelation for Japan, South Korea, and China, respectively. The X-axis
in these plots represents the values of PC1 on the left side and PC2 on the
right side, respectively. Meanwhile, the Y-axis displays the weighted mean of
the neighbors, indicating the spatial lag. The regression line in these graphs
indicates the level of spatial dependence. The Moran scatter plot is divided
into four quadrants: top-right, top-left, bottom-right, and bottom-left. The
top-right and bottom-left quadrants highlight spatial clusters, emphasizing
municipalities and their neighbors with similar high or low values in PC1 and
PC2, respectively. Spatial outliers are observed in the top-left and bottom-
right parts of the graphs. These outliers represent municipalities with high
values in PC1 and PC2, surrounded by neighbors with low values, or vice
versa.

The highlighted dots in these Figures indicate observations that are sta-
tistically significant (with a p-value of 0.01). This approach mitigates any
potential issues related to the multiple comparisons problem. As per Anselin
(1995), the multiple comparisons problem is a concern that may arise when
conducting any analysis of local indicators of spatial association (LISA).

Figures 6, 8, and 10 display the spatial distribution of municipalities that
hold statistical significance for each of the countries we study. The four quad-
rants in the Moran scatter plots show that the municipalities are grouped
into clusters representing hot spots (high-high) and cold spots (low-low) for
PC1 and PC2, respectively. The remaining municipalities are characterized
as spatial outliers. Figures 5-10 reveal the presence of positive and statis-
tically significant spatial dependence. The Global Moran’s I quantifies this
spatial relationship. We observe that for all countries, the Global Moran’s I
for PC2 (representing levels of PM2.5) tends to be above 0.5, meaning there
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is a high spatial dependence.
In Japan, the coefficient value for PC2 is 0.626; for South Korea, it is

0.530; and for China, 0.835. These coefficients indicate a pronounced spatial
dependence. Figure 6b for Japan illustrates clusters of hot spots in the islands
of Kyushu and southwest Honshu, comprising 161 municipalities. Figure 8b,
shows hot spots in 24 districts in South Korea, mainly from the Gyeonggi
Province. Meanwhile, Figure 10b presents hot spot clusters, concentrated
mostly in the northwest, center, and southwest regions. All these hot spots
exhibit municipalities or districts with elevated mean levels of PM2.5 con-
centrations, surrounded by other municipalities/districts with high levels of
PM2.5 concentrations.

Conversely, cold spots in Japan consist of 66 municipalities, mostly gath-
ered to the east in the Kanto region. Others surround these municipalities
with lower levels of PM2.5 concentration. In the same vein, in South Korea,
we observe that a tiny cold spot of 6 districts is located in the southeast part
of the country (in the city of Busan). For China, a large cold spot is located
to the northwest, with a medium-sized one to the east.

Figures 6a, 8a, and 10a illustrate the spatial dependence of PC1 in Japan,
South Korea, and China respectively. We observe a positive and statistically
significant spatial dependence, which is higher than its PC2 counterpart,
except for China. The corresponding values for this dependency are 0.881,
0.828, and 0.404, respectively. In Japan, PC2’s hot spots are limited, primar-
ily located in parts of the Tokyo, Kansai, and Chugoku regions, encompassing
112 municipalities. In contrast, cold spots are more extensive, spanning most
of the island of Hokkaido, large parts of the northeast and south west of the
Honshu island. Similar to Japan, South Korea exhibits reduced hotspots for
PC1, focused chiefly in the cities of Seoul to the northwest, and Busan to the
southeast. On the other hand, South Korea’s coldspots for its PC1 variable
is large and extends most of the north and also parts of the south. Finally,
for China, we see small pockets of hotspots in the middle, east and south
regions. As in the cases of Japan and South Korea, coldspots are rather
large, spreading through the northeast, southeast, and center regions.

The Moran scatter plot functions as a tool for identifying two-dimensional
clusters. The first dimension represents the values of principal components,
such as economic activity and air pollution, while the second dimension re-
flects spatial contiguity, i.e., the geographical proximity of municipalities.
Ideally, we would like to classify the areas shaded in grey on the maps (Fig-
ures 6, 8, and 10) that lack statistical significance. To address this, we employ
a spectral clustering method in the following section.
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3.3 Spectral Clustering

Next, we employ spectral clustering, a technique for partitioning graphs that
works well with both dimension reduction and cluster identification simul-
taneously. Spectral clustering can be conceptualized as the task of dividing
a graph into internally cohesive subgraphs while minimizing connections be-
tween them. It seeks to optimize the similarity within each cluster. Ideally,
these subgraphs should be connected components, entirely internally con-
nected without any links to other subgraphs, but this is rarely achievable in
practice. Therefore, the focus shifts to identifying optimal cuts in the graph
that result in a partition of k subsets, prioritizing high internal connectivity
and low inter-cluster connectivity.

Through the Spectral clustering method, it becomes feasible to partition
various regions into analytical groupings based on their level of economic
activity and/or air pollution. In contrast to conventional regional divisions,
which merely provide information on locational similarity, partitioning the
countries into analytical regions yields additional insights into both their
locational and attribute similarities. It may be the case that municipalities
exhibit locational similarity while differing in attributes such as pollution lev-
els or economic activity. Figures 11-13 depict analytical regions comprising
clusters of municipalities characterized by similar pollution levels and/or eco-
nomic activity, along with spatial heterogeneity within each administrative
region.

Two key observations emerge from the clustering process. First, both
economic activity and air pollution levels (represented by PC1 and PC2,
respectively) extend across multiple administrative regions. This underscores
the need for coordination among the affected regions in each country to
address and ameliorate the situation. Second, it is noteworthy that certain
countries exhibit more significant spatial variation and heterogeneity than
others. This is due to the intrinsic spatial distribution of the variables under
analysis in each country.

Japan has improved its air quality significantly in recent decades. The
results show that very few municipalities do not attain the environmental
quality standards that the Ministry of the Environment set. These annual
quality standards call for concentrations of PM2.5 to be less than or equal
to 15.0 µg/m3.3 Currently, only some municipalities located on the island
of Kyushu cross this threshold (shown in Figure 11b), but with a downward
trend. This implies that should this tendency persist, they will also comply
with the environmental quality standards in a few years.

3https://www.env.go.jp/en/air/aq/aq.html
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In the case of China, we see in Figure 3 that to the east and the center-
west PM2.5 concentrations are quite high. Yousefi et al. (2023) explain that
PM2.5 levels saw a notable increase across all regions from 1980 to 2020.
Notably, the eastern and southern regions experienced the most significant
upward trends in PM2.5 concentrations. However, around 2007, the PM2.5

concentration trends shifted from upward to downward in these regions due
to the implementation of air pollution control policies by the Chinese govern-
ment. The clustering analysis (shown in Figure 13b) highlights this through
the partitioning of the country into analytical regions, with the east in red
and south in blue being the regions where more commitment needs to be
made.

Despite the efforts made in recent decades to reduce domestic air pollu-
tion, South Korea still grapples with frequent and severe air pollution during
the winter and spring months, posing significant risks to public health and
socioeconomic activities. It is recognized that the air quality in South Korea
is impacted not only by local stationary and mobile sources but also by the
long-range transport of air pollutants from external origins, such as the air-
borne particles originating from the industrial activities of China’s factories
and coal-fired power plants, often referred to as yellow dust (Jun and Gu,
2023).

By gaining a more comprehensive understanding of the spatial interaction
of multiple variables, we can enhance our ability to effectively convey strate-
gies for addressing these issues to policymakers and stakeholders. A nuanced
comprehension of how pollution is distributed across different regions enables
policymakers to devise and tailor policies with greater precision, thereby en-
hancing their effectiveness in addressing environmental concerns.

4 Discussion and policy implications

The preceding subsections demonstrate that both the Local Moran and Spec-
tral clustering methods serve as complementary analyses. While the Local
Moran analysis identifies hot spots and cold spots, the spectral clustering
method groups the remaining municipalities into clusters with similar at-
tributes. Utilizing these techniques does not always result in a direct overlay
of clusters. Nevertheless, such an analysis aids in identifying robust spa-
tial clusters deserving of further investigation. These clusters offer valuable
insights at both the local/regional and national levels for policymakers, as-
sisting in the planning and formulation of policies targeted towards areas
where improving air pollution may be desirable.

When comparing the resulting spatial clusters, two considerations must
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be kept in mind. First, the Local Moran method assesses observations solely
from the high-high and low-low quadrants of the graph, whereas the Spec-
tral clustering incorporates all quadrants. Second, clusters derived from the
Spectral method tend to exhibit larger sizes compared to those from the Lo-
cal Moran method. This disparity arises because the Local Moran method
examines spatial contiguity primarily through first-order neighbors, whereas
the Spectral clustering method considers higher-order neighbors as well. Con-
sequently, these methodologies complement each other effectively. By lever-
aging both approaches, we gain insights from the distinct information they
offer.

Utilizing a spatial clustering approach allows us to track the differences
in PM2.5 throughout regions in each of the countries under study. More-
over, pollutants such as PM2.5 can travel considerable distances via wind,
impacting both distant regions and other countries. Thus, it is imperative
for policymakers to foster both inter-regional and international cooperation
to effectively address these challenges. As shown in this study, spatial clus-
tering analysis proves instrumental in identifying clusters of regions where
collaboration can yield positive outcomes. Conducting such analysis offers a
holistic perspective on how regions should be considered, aiding policymakers
in making informed decisions.

According to Jun and Gu (2023), approximately 40% of domestic PM2.5

concentrations in South Korea, on average, stem from long-range transport
from Chinese cities during periods of high PM2.5 levels. This underscores the
importance of controlling emission releases at their source in China to miti-
gate air pollution in Korea. Furthermore, the significant impact of long-range
transport on the Seoul Metropolitan Area (SMA), where over half of the na-
tion’s population resides, suggests that residents in this area may endure
the most severe health consequences from exposure to long-range transport.
Therefore, it is fundamental to have active diplomatic efforts between Korea
and China, alongside the development of corresponding emission reduction
policies.

Research by Kaneyasu et al. (2020) shows that many sources of PM2.5

in Japan stem from coal and oil combustion by industries, transportation,
and heating systems. Furthermore, as noted by Yim et al. (2019), there is
evidence of transboundary air pollution from neighboring countries. In this
latter case, it is imperative to tackle the air pollution sources for the situation
to improve. This presents opportunities for collaborative efforts to improve
the environmental quality while fostering economic ties for all the parties
involved.

Several policies and regulations could potentially alter these pollution
patterns. Firstly, enhancing and expanding the monitoring system for data
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collection to study and implement measures for PM2.5 pollution. Secondly,
implementing taxes and subsidies to promote larger shares of cars sold that
meet more stringent environmental standards by 2030. Last and funda-
mentally, international cooperation between Japan, South Korea, and China
through joint research and efforts in cutting PM2.5 concentrations can have
a substantial impact on decreasing air pollution levels. The experience that
Japan has accumulated since the 1960s in reducing its air pollution can be
of use to China and South Korea. Improving air quality in the latter two
countries would also yield benefits to Japan, as it would experience reduced
inbound air pollution from these nations.

5 Conclusions

In this study, we identify clusters of municipalities in Japan and South Korea
and counties in China. These municipalities and counties exhibit similar pol-
lution levels and economic activity to their neighbors. We employ principal
component analysis (PCA) and spatial data analysis techniques to achieve
this. We then assess regional disparities in PM2.5 concentration, popula-
tion density, night lights, and vegetation concentration. Through PCA, we
reduce the dimensionality of these variables into PC1 and PC2. PC1 primar-
ily reflects municipal variations in vegetation, population density, and night
lights. Meanwhile, PC2 represents variations in air pollution, specifically
PM2.5. Subsequently, we identify clusters of municipalities sharing similar
economic activity and air pollution levels.

We observe a clear and statistically significant spatial dependence across
regions in each country. Municipalities/counties tend to exhibit similar eco-
nomic activity and air pollution, as indicated by PC1 and PC2, respectively,
particularly with other neighboring municipalities/counties. For example,
the PC1 hot spot clusters in metropolitan areas like Tokyo, Nagoya, and
Osaka in Japan and Seoul and Busan in South Korea are particularly inter-
esting. High levels of economic activity and population density characterize
these clusters.

Relying on a Spectral clustering method, we obtain outcomes that largely
correspond to those from the spatial dependence analysis. This algorithm
partitions each country into different regions based on the results derived
from the PC1 and PC2 variables. These newly delineated regions help in
indicating the spread of pollution and economic activities across municipal
and regional borders. By defining these new boundaries, municipalities in
each country can collaborate more effectively in devising and implementing
policies to address air pollution issues.
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Future research could focus on understanding the clustering of regions
throughout multiple periods of time. Additionally, exploring alternative clus-
tering methods that account for changes in regional composition, such as
variations in population density and economic activity, may offer deeper in-
sights into the complex relationship between pollution and regional economic
development.
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6 Appendix

6.1 Figures

Figure 4: Regions of Japan.

Figure 5: Spatial Autocorrelation for Japan

(a) PC1 (b) PC2
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Figure 6: Japanese Hot and Cold Spots (PC1 & PC2)

(a) PC1 (b) PC2

Figure 7: Spatial Autocorrelation for South Korea

(a) PC1 (b) PC2
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Figure 8: South Korean Hot and Cold Spots (PC1 & PC2)

(a) PC1 (b) PC2

Figure 9: Spatial Autocorrelation for China

(a) PC1 (b) PC2
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Figure 10: Hot and Cold Spots for Mainland China (PC1 & PC2)

(a) PC1 (b) PC2

Figure 11: Analytical Regions for Japan

(a) PC1 (b) PC2
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Figure 12: Analytical Regions for South Korea

(a) PC1 (b) PC2

Figure 13: Analytical Regions for Mainland China

(a) PC1 (b) PC2
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